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Abstract
Stationary geodesics of left-invariant Riemannian metrics on Lie groups were
introduced by Arnold as those geodesics which are also orbits of one-parameter
groups of left-translations. The existence of infinitely many stationary
geodesics in the case of compact semi-simple Lie groups has recently been
established by Szenthe. Stationary geodesics of left-invariant Lagrangians on
Lie groups are studied and the existence of infinitely many such geodesics on
compact semi-simple Lie groups is established below.

PACS number: 4520J

Geodesics of left-invariant Riemannian metrics on Lie groups were studied by Arnold
extending Euler’s theory of rigid-body motion [A]. A major part of Arnold’s paper is devoted
to the study of stationary geodesics; these are those geodesics which are simultaneously orbits
of one-parameter groups of left-translations. A basic fact concerning stationary geodesics is
the existence of a correspondence which renders to each such geodesic a critical point of that
function which is obtained from the energy function of the left-invariant Riemannian metric
by restricting it to an adjoint orbit. The above correspondence has a basic role in Arnold’s
stability theory of stationary geodesics.

Being unaware of Arnold’s paper, stationary geodesics of left-invariant Riemannian
metrics of Lie groups were studied by the author under the name of homogeneous geodesics
[Sz]. The correspondence of stationary geodesics to critical points of the restricted energy
function was rediscovered and proved within the framework of Riemannian geometry in [Sz];
actually Arnold’s proof of the same fact was motivated by methods of mechanics. The main
result of the paper [Sz] concerns the existence of stationary geodesics. It was shown that on a
compact semi-simple Lie group of rank � 2 there are infinitely many stationary geodesics in
the case of any left-invariant Riemannian metric.

The above-mentioned existence theorem of stationary geodesics of left-invariant
Riemannian metrics is generalized to stationary geodesics of left-invariant Lagrangians in the
present paper. As a starting point a correspondence of stationary geodesics to critical points
of restricted Lagrangians is established under the assumption that the Lie group is compact
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166 J Szenthe

and Lagrangian is a first integral of its Lagrangian field. Then results concerning the existence
of stationary geodesics are obtained. First, the existence of at least two stationary geodesics
is proved in the case of any compact Lie group and left-invariant Lagrangian which is a first
integral of its Lagrangian field. Secondly, the existence of infinitely many stationary geodesics
is established in the case of any compact semi-simple Lie group of rank � 2 and left-invariant
Lagrangian which is a first integral of its Lagrangian field.

1. Left-invariant Lagrangians over Lie groups and their stationary geodesics

Some basic concepts and facts of Lagrangian analytical mechanics are summarized in what
follows.

Let M be a smooth manifold, a continuous function L : TM → R is said to be a
Lagrangian over M if it is smooth on the open set TM◦ = TM − {OTM}, where OTM is
the image of the zero section of TM . The vertical endomorphism υ of the second tangent
bundle T TM yields the vertical derivation ιυ and by dυ = ιυ d − dιυ the vertical differential
(see, e.g., [G, pp 159–64]). Therefore, the vertical differential dυL of L, a differential 1-form
on TM◦, is obtained (see, e.g., [G, pp 161–4]). The Lagrangian L is said to be regular if
the differential 2-form ddυL is non-degenerate. The Liouville field A : TM → T TM is the
smooth vector field induced by the one-parameter dilatation group of TM as a vector bundle
(see, e.g., [G, pp 155–6]). A smooth function F : TM◦ → R is said to be homogeneous
of degree k if AF = kF holds and a smooth vector field Z : TM → T (TM◦) is said to be
homogeneous of degree k if [A,Z] = (k−1)Z is valid where k ∈ R. Now the Euler–Lagrange
equation for L is obtainable in the following form:

ιX ddυL = d(L− AL)

where a solution of the equation is a smooth vector field X : TM◦ → T (TM◦) satisfying the
above equality and it is called a Lagrangian field associated with L (see, e.g., [B, pp 22–6]). If
L is regular then such an X uniquely exists. Let L be regular, if γ̂ : I → TM◦ is a maximal
integral curve of the Lagrangian field X then γ = πM ◦ γ̂ : I → M is called a geodesic of
the Lagrangian L. In this case γ̂ = γ̇ is valid (see, e.g., [G, pp 169–75] and [B, pp 22–9]). A
smooth vector field S : TM → T TM is called an infinitesimal symmetry of the Lagrangian
L if SL = 0 holds and S is said to be an infinitesimal symmetry of the Lagrangian field X if
[S,X] = 0 is valid.

Proposition 1.1. Let L : TM → R be a regular Lagrangian over a smooth manifold M and
S : TM → T TM be an infinitesimal symmetry of L which is homogeneous of degree one
and such that LSυ = 0 holds for the vertical endomorphism υ. Then S is an infinitesimal
symmetry of the Lagrangian field X of L.

Proof. Let Z : TM → T TM be a smooth vector field and υ the vertical endomorphism
of T TM , then by υ ′ = LZυ an endomorphism υ ′ of T TM is obtained. Consider the
corresponding derivation ιυ ′ and the differential dυ ′ = [ιυ ′ , d]. Then the following fundamental
commutator identity is valid:

[LZ, dυ] = dυ ′ .

In fact, the validity of the above identity can be verified by checking it in the case of the
differential formsφ, dφ, φ ∈ F(TM). Assume that the smooth vector fieldS is an infinitesimal
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symmetry of the Lagrangian L and LSυ = 0 is valid. Then by the Euler–Lagrange equation
and the above commutator identity the following holds:

0 = ιX ddυSL = ιX ddυLSL

= ιX d(dυLS − LS dυ)L + ιX dLS dυL

= −ιX ddυ ′L + ιXLS ddυL

= (ιXLS − LSιX) ddυL + LSιX ddυL

= ι[X,S] ddυL + LS d(L− AL) = ι[X,S] ddυL + d(SL + [A, S]L− ASL)

= ι[X,S] ddυL

where another well known basic commutator identity and the assumption thatS is homogeneous
of degree one have been applied (see, e.g., [G]). However, then as L is regular [X, S] = 0
follows. �

Concerning Lie groups the following elementary facts will be applied in subsequent
definitions:

Let G be a connected Lie group, λ : G × G → G the action being defined by the left-
translations λg : G → G, g ∈ G and T λ : G × TG → TG the action given by the tangent
linear maps T λg : TG → TG, g ∈ G of the left-translations. The infinitesimal generators
of the action λ are the right-invariant vector fields; namely, if Z ∈ g is an element of the Lie
algebra of G and Z̄ : G → TG is the corresponding infinitesimal generator of λ then

Z̄(x) = d

dτ
(λExp(τZ)x)

∣∣∣∣
τ=0

= d

dτ
(ρx Exp(τZ))

∣∣∣∣
τ=0

= TeρxZ̄(e) x ∈ G

holds where ρx : G → G is the right-translation by x. Now Ẑ : TG → T TG the infinitesimal
generator of the action T λ corresponding to Z is obtainable also as the complete lift Z̄c of
the right-invariant field Z̄, in other words Ẑ = Z̄c holds, according to a basic result (see, e.g.,
[MFVMR, pp 156–8]).

Definition. Let G be a connected Lie group, a regular Lagrangian L : TG → R is said
to be left-invariant if it is invariant under the action T λ. Moreover, a smooth vector field
X : TG◦ → T TG is said to be left-invariant if

T T λg ◦X ◦ T λ−1
g = X g ∈ G

holds, where TG◦ = TG− OTG as before.

The preceding proposition obviously has the following:

Corollary. If L : TG → R is a left-invariant Lagrangian then its Lagrangian field X is
left-invariant as well.

Definition. A geodesic γ : I → G of a left-invariant Lagrangian is said to be stationary if
there is a Z ∈ g such that γ (τ) = λExp(τZ)γ (0), τ ∈ I holds. It will be said that v ∈ TeG is a
geodesic vector if the geodesic γ : I → G defined by v = γ̇ (0) is stationary.

Lemma 1.2. Let L be a left-invariant Lagrangian over a connected Lie group G with its
Lagrangian field X : TG◦ → T (TG◦). If γ̂ : I → TG◦ is a maximal integral curve of X
then the geodesic γ = πG ◦ γ̂ : I → G is stationary if and only if there is a Z ∈ g such that
γ̂ (τ ) = T λExp(τZ)γ̂ (0), τ ∈ I holds.
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Proof. Assume first that the geodesic γ is stationary. Then there is a Z ∈ g such that for a
τ0 ∈ I the following holds:

γ̂ (τ0) = γ̇ (τ0) = d

dτ
(γ (τ0 + τ))

∣∣
τ=0

= d

dτ
(λExp((τ0+τ)Z)γ (0))

∣∣
τ=0 = d

dτ
(λExp(τ0Z)γ (τ ))

∣∣
τ=0

= T λExp(τ0Z)γ̇ (0) = T λExp(τ0Z)γ̂ (0).

Assume now conversely that for the maximal integral curve γ̂ of X the following holds
γ̂ (τ ) = T λExp(τZ)γ̂ (0), τ ∈ I with some Z ∈ g. Then the following is also valid:

γ (τ) = πG(γ̂ (τ )) = πG(T λExp(τZ)γ̂ (0))

= λExp(τZ)(πG(γ̂ (0)) = λExp(τZ)γ (0)

which shows that γ is a stationary geodesic. �

Proposition 1.3. Let G be a connected Lie group, L : TG → R a left-invariant Lagrangian,
X its Lagrangian field and v ∈ TeG− {0e}. Then v is a geodesic vector if and only if there is
a Z ∈ g such that X(v) = Z̄c(v) holds with the complete lift of the infinitesimal generator of
λ corresponding to Z.

Proof. The curve τ �→ TeλExp(τZ)(v), τ ∈ R is obviously an integral curve of the field
Ẑ = Z̄c. As [A, Z̄c] = 0 holds by a basic observation (see, e.g., [MFVMR, pp 156–8]) and as
LZ̄cυ = 0 is also valid by a fundamental result (see, e.g., [MFVMR, pp 160–1]), the former
proposition 1.1 applies and yields that Z̄c is an infinitesimal symmetry of X. Therefore,

T T λExp(τZ) ◦X ◦ T λ−1
Exp(τZ)(v) = X(v)

is valid (see, e.g., [G, pp 104–7]). However, then the following is obtained:

d

dτ
(TeλExp(τZ)(v))

∣∣∣∣
τ=τ0

= Z̄c ◦ TeλExp(τ0Z)(v)

= T T λExp(τ0Z) ◦ Z̄c ◦ T λ−1
Exp(τ0Z)

◦ T λExp(τ0Z)(v)

= T T λExp(τ0Z) ◦ Z̄c(v) = T T λExp(τ0Z) ◦X(v)
= T T λExp(τ0Z) ◦X ◦ T λ−1

Exp(τ0Z)
◦ T λExp(τ0Z)(v)

= X ◦ T λExp(τ0Z)(v).

The above equalities yield that the curve τ �→ T λExp(τZ)(v), τ ∈ R is an integral curve of
the field X as well; but then this curve is equal to the curve γ̂ . Therefore, γ = πG ◦ γ̂ is a
stationary geodesic of L by lemma 1.1. �

As some of the subsequent calculations are based on special coordinate systems a concise
account of their construction and of some basic properties is presented in what follows.

Consider first a canonical coordinate system of the Lie group G defined on a
neighbourhood U ⊂ G of e as follows (see also, e.g., [C, pp 115–8]). Let TeG be canonically
identified with g as a vector space and consider an open neighbourhood U ′ ⊂ TeG of 0e such
that Exp�U ′ is a diffeomorphism and put U = Exp(U ′). Fix a base (E1, . . . , Em) of TeG and
let ω : TeG → R

m be the vector space isomorphism defined by ω : TeG � ∑m
i=1 λ

iEi �→
(λ1, . . . , λm) ∈ R

m. Now put

ω ◦ (Exp�U)−1(g) = (y1(g), . . . , ym(g)) ∈ R
m g ∈ U.
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Consider now Z = ∑m
j=1 ζ

jEj ∈ g then the corresponding one-parameter group of left-

translations λExp(τZ) : G → G, τ ∈ R yields the infinitesimal generator Z̄ of the action λ
which can be obtained in the above canonical coordinate system as follows taking into account
the Campbell–Hausdorff formula as well:

Z̄(g) = d

dτ

(
Exp

(
τ

m∑
i=1

ζ iEi

)
Exp

( m∑
j=1

yjEj

))∣∣∣∣
τ=0

= d

dτ

(
Exp

( m∑
i=1

(τζ i + yi)Ei + τ
m∑

i,j=1

yiζ j [Ei,Ej ] + τ 2R

))∣∣∣∣
τ=0

= TX Exp ◦κX
( m∑

k=1

ζ kEk +
m∑

i,j=1

ckij y
iζ jEk

)

=
m∑
k=1

(
ζ k +

m∑
ij=1

ckij y
iζ j

)
∂

∂yk

∣∣∣∣
g

where U � g = Exp(X),X ∈ U ′ and R is the remainder term of the Campbell–Hausdorff
formula (see, e.g., [T, pp 119–32]).

Secondly, following the general construction by which a coordinate system of a smooth
manifold induces a natural coordinate system of its tangent bundle, also the canonical
coordinate system (y1, . . . , ym) of G induces a natural coordinate system

(x1, . . . , xm; ẋ1, . . . , ẋm)

of the tangent bundle TG on its open subset T U as follows. If w = ∑m
i=1 w

i ∂
∂yi

∣∣
g

∈ TgG for

g ∈ U then xi(w) = yi ◦ πG(w), ẋi(w) = wi, i = 1, . . . , m.
Now the expression of the complete lift Z̄c of the infinitesimal generator Z̄ of the action

λ : G×G → G in the above natural coordinate system of TG is obtained as follows:

Z̄c�T U =
m∑
k=1

{(
ζ k +

m∑
ij=1

ckij ζ
ixj

)
∂

∂xk
+

m∑
ij=1

ckij ζ
i ẋj

∂

∂ẋk

}

in fact, a direct application of the general coordinate expression of complete lifts of vector
fields yields the above one (see, e.g., [MFVMR, pp 156–8]).

Proposition 1.4. LetL : TG → R be a left-invariant Lagrangian over a connected Lie group,
X its Lagrangian field, v ∈ TeG − {0e} and γ : I → G the maximal geodesic defined by
γ̇ (0) = v. Let (y1, . . . , ym) be a canonical coordinate system of G as a Lie group defined by
the base (E1, . . . , Em) of TeG and (x1, . . . , xm; ẋ1, . . . , ẋm) the induced natural coordinate
system of TG on T U and

X�T U =
m∑
k=1

{
ẋk

∂

∂xk
+ ξk(x1, . . . , xm; ẋ1, . . . , ẋm)

∂

∂ẋk

}
.

Then v is a geodesic vector if and only if ξk(0, . . . , 0; v1, . . . , vm) = 0, k = 1, . . . , m holds
where v has the coordinates (0, . . . , 0; v1, . . . , vm) in the above induced natural coordinate
system of TG.
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Proof. According to proposition 1.3 the geodesic γ is stationary if and only if with some
Z ∈ g the following holds:
m∑
k=1

{
ζ k

∂

∂xk
+

m∑
i,j=1

ckij ζ
ivj

∂

∂ẋk

}
= Z̄c(v) = X(v)

=
m∑
l=1

{
vl

∂

∂xl
+ ξ l(0, . . . , 0; v1, . . . , vm)

∂

∂ẋl

}

where the above derived coordinate expression of Z̄c has been applied. However, the above
equality holds if and only if the following is valid:

ζ k = vk
m∑

i,j=1

ckij ζ
ivj = ξk(0, . . . , 0; v1, . . . , vm) k = 1, . . . , m.

However, if the above equalities are valid then ckij = −ckji , i, j, k = 1, . . . , m implies that

ξk(0, . . . , 0; v1, . . . , vm) = 0 k = 1, . . . , m

follows. Assume now conversely that ξk(0, . . . , 0; v1, . . . , vm) = 0, k = 1, . . . , m is valid for
some v ∈ TeG− {0}. Consider now Z = ∑m

i=1 v
iEi ∈ g. Then Z̄c(v) = X(v) is valid by the

expressions above. �

2. Stationary geodesics and the critical points of the restricted Lagrangian

Some elementary facts concerning adjoint actions are summarized in what follows.
Let ad : G×G → G be the adjoint action given by ad(g)x = gxg−1, (g, x) ∈ G×G

and Ad : G× TG → TG the induced action defined by

Ad(g)v = Txad(g)v v ∈ TxG x ∈ G.

In order to calculate the infinitesimal generators of the action ad, fix Z ∈ g = TeG and
x = Exp(W),W ∈ g; then by the equivariance of Exp the following holds for the infinitesimal
generator Z̃ of the action ad induced by Z:

Z̃(x) = d

dτ
(ad(Exp(τZ))x)

∣∣∣∣
τ=0

= d

dτ
(ad(Exp(τZ))ExpW)

∣∣∣∣
τ=0

= d

dτ
(Exp(Ad(Exp(τZ)W))

∣∣∣∣
τ=0

= TW Exp ◦κW([Z,W ])

where g as a vector space is canonically identified with TeG and κW : TeG → TWTeG is
the canonical isomorphism (see, e.g., [T, pp 98–9]). Now let (y1, . . . , ym) be the canonical
coordinate system of the Lie group defined on a neighbourhoodU of e by a base (E1, . . . , Em)

of TeG. Then Z = ∑m
i=1 ζ

iEi , W = ∑m
j=1 v

jEj and the following is obtained:

Z̃(x) = TW Exp ◦κW
([ m∑

i=1

ζ iEi,

m∑
j=1

yjEj

])
= TW Exp ◦κV

( m∑
i,j,k=1

ckij ζ
ivjEk

)

=
m∑

i,j,k=1

ckij ζ
ivjTW Exp ◦κW(Ek) =

m∑
ij=1

ckij ζ
iyj

∂

∂yk

∣∣∣∣
g

where ckij , i, j, k = 1, . . . , m are the structural constants of g with respect to the above fixed

base (E1, . . . , Em). Now let Z̃c be the complete lift of Z̃ to TG. Then the expression of Z̃c in
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the natural coordinate system (x1, . . . , xm; ẋ1, . . . ẋm) of TG induced by (y1, . . . , ym) is the
following:

Z̃c�T U =
m∑
k=1

{ m∑
i,j=1

(
ckij ζ

ixj
∂

∂xk
+

m∑
i,j=1

ckij ζ
i ẋj

∂

∂ẋk

)}

according to a basic expression of complete lifts of vector fields (see, e.g., [MFVMR, pp 156–
8]). �

Definition. Let G be a connected Lie group, L : TG → R a left-invariant Lagrangian
over G and v ∈ TeG − {0e}. Then G(v) ⊂ TeG the orbit of v under the adjoint action
Ad : G × TG → TG is obtainable as the image of the canonical equivariant injective
immersion

χ : G/Gv → G(v) ⊂ TeG.

Then by the restricted Lagrangian corresponding to the orbit G(v) the smooth function

L ◦ χ : G/Gv → R

is meant in case of any v ∈ TeG− {0e} by a slightly loose terminology in what follows.

Lemma 2.1. Let L : TG → R be a left-invariant Lagrangian over a connected Lie group,
(y1, . . . , ym) the canonical coordinate system of G defined by a base (E1, . . . , Em) of TeG
and

(x1, . . . , xm; ẋ1, . . . , ẋm)

the induced natural coordinate system of the tangent bundle TG. Let v ∈ TeG − {0e} have
the coordinates (0, . . . , 0; v1, . . . , vm). Then v is a critical point of the restricted Lagrangian
L ◦ χ if and only if

m∑
j,k=1

ckij v
j ∂L̃

∂ẋk
= 0 i = 1, . . . , m

holds where ckij , i, j, k = 1, . . . , m are the structural constants of g in the above base and

L̃(x1, . . . , xm; ẋ1, . . . , ẋm) is the coordinate expression of the Lagrangian L�T U .

Proof. If Z ∈ g and Z̃ is the corresponding infinitesimal generator of the adjoint action ad
then its complete lift Z̃c is the corresponding infinitesimal generator of the adjoint action Ad.
Let Z̄∗ : G/Gv → T (G/Gv) be the infinitesimal generator of the canonical action of G
on G/Gv corresponding to Z ∈ g. Considering that χ is equivariant between the canonical
action of G on G/Gv and its adjoint action Ad the above coordinate expression of Z̃c yields
the following:

ιZ∗d(L ◦ χ) = ιZ̃c(V ) dL = Z̃c(V )L =
m∑
k=1

m∑
i,j=1

ckij ζ
ivj

∂L̃

∂ẋk

∣∣∣∣
V

= 0

where Z = ∑m
i=1 ζ

iEi ∈ g and the fact was used that xi(v) = 0, i = 1, . . . , m holds
for v ∈ TeG. Since the tangent space TvG(v) of the orbit G(v) is spanned by the vectors
Z̃c(v), Z ∈ g the assertion of the lemma follows. �
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Proposition 2.2. Let G be a compact Lie group, L : TG → R a left-invariant Lagrangian
which is a first integral of its Lagrangian field X and (y1, . . . , ym) the canonical coordinate
system of the Lie group defined by a base (E1, . . . , Em) of TeG which is orthonormal with
respect to an Ad-invariant Euclidean inner product of TeG. Also let

(x1, . . . , xm; ẋ1, . . . , ẋm)

be the natural coordinate system of TG induced by the above canonical one. Then v ∈
TeG− {0e}, is a geodesic vector if and only if

∂L̃

∂xi
(0, . . . , 0; v1, . . . , vm) = 0 i = 1, . . . , m

holds where L̃(x1, . . . , xm; ẋ1, . . . , ẋm) is the coordinate expression of L�T U and also
v = ∑m

i=1 v
iEi .

Proof. Since L is left-invariant, Z̄cL = 0 holds. However, then by the coordinate expression
of Z̄c�T U the following is obtained:

Z̄c�T U =
m∑
k=1

{
ζ k
∂L̃

∂xk
+

m∑
i,j=1

ckij ζ
i ẋj

∂L̃

∂ẋk

}

=
m∑
k=1

ζ k
{
∂L̃

∂xk
+

m∑
i,j=1

ckij ẋ
i ∂L̃

∂ẋk

}
= 0.

Since the above equality holds for any Z ∈ g, it yields the following system of equalities:

∂L̃

∂xk
+

m∑
i,j=1

ckij ẋ
i ∂L̃

∂ẋj
= 0 k = 1, . . . , m.

On the other hand, as L is a first integral of X, XL = 0 also holds. Therefore, the coordinate
expression of X and the preceding system of equalities yield the following:

XL�T U =
m∑
l=1

{
ẋl
∂L̃

∂xl
+ ξ l(x1, . . . , xl; ẋ1, . . . , ẋm)

∂L̃

∂ẋl

}

=
m∑
l=1

{
ẋl

(
−

m∑
i,j=1

clij ẋ
i ∂L̃

∂ẋj

)
+ ξ l(x1, . . . , xm; ẋ1, . . . , ẋm)

∂L̃

∂ẋl

}

= −
m∑

i,j,l=1

clij ẋ
i ẋl

∂L̃

∂ẋj
+

m∑
l=1

ξ l(x1, . . . , xm; ẋ1, . . . , ẋm)
∂L̃

∂ẋl
= 0.

Since the base (E1, . . . , Em) is orthonormal with respect to anAd-invariant Euclidean interior
product, the structural constants of g with respect to the above base satisfy the conditions
clij = −cilj , i, j, l = 1, . . . , m. Therefore, the above expression simplifies as follows:

XL�T U =
m∑
j=1

ξ j (x1, . . . , xm; ẋ1, . . . , ẋm)
∂L̃

∂ẋj
= 0.

However, then the coordinate expression of XL = 0 reduces to the following:

XL�T U =
m∑
l=1

ẋl
∂L̃

∂xl
= 0.
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Since XL vanishes, its vertical differential dυ(XL) vanishes too and therefore the following
holds:

dυ(XL)�T U =
∑ ∂(X̃L)

∂ẋk
dxk =

m∑
k=1

{
∂L̃

∂xk
+

m∑
l=1

ẋl
∂2L̃

∂ẋk∂xl

}
dxk = 0.

On the other hand, the Euler–Lagrange equations forL in the above induced natural coordinates
of TG yield the following (see, e.g., [B, pp 24–6])

m∑
i=1

∂2L̃

∂ẋi∂xl
ξ i(x1, . . . , xm; ẋ1, . . . , ẋm) = ∂

∂xl
−

m∑
i=1

∂2L̃

∂xi∂ẋl
ẋi l = 1, . . . , m.

Consider now the geodesic γ of L defined by v = γ̇ (0) where v = ∑m
i=1 v

iEi ∈ TeG.
According to proposition 1.4 the geodesic γ is stationary if and only if

ξ i(0, . . . , 0; v1, . . . , vm) = 0 i = 1, . . . , m

is valid. However, then the above coordinate expression of the Euler–Lagrange equation yields
that γ is stationary if and only if

∂L̃

∂xl
−

m∑
i=1

∂2L̃

∂xi∂ẋl
vi = 0 l = 1, . . . , m

holds, since the Lagrangian L is assumed to be regular. On the other hand, by the calculations
above XL = 0 implies the following:

∂L̃

∂xl
+

m∑
k=1

∂2L̃

∂ẋl∂xk
ẋk = 0 l = 1, . . . , m.

By addition of the corresponding equations of the last two systems the following is obtained:

∂L̃

∂xl
(0, . . . , 0; v1, . . . , vm) = 0 l = 1, . . . , m

is valid if and only if the geodesic γ is stationary. �

Theorem 2.3. Let G be a compact Lie group and L : TG → R a left-invariant Lagrangian
which is a first integral of its Lagrangian field X. Then v ∈ TeG − {0e} is a geodesic vector
if and only if v is the image under the equivariant immersion χ : G/Gv → G(v) ⊂ TeG of a
critical point of the restricted Lagrangian L ◦ χ : G/Gv → R.

Proof. Consider the canonical coordinate system (y1, . . . , ym) of G defined by a base
(E1, . . . , Em) of TeG which is orthonormal with respect to an Ad-invariant Euclidean inner
product of TeG. Let no

(x1, . . . , xm; ẋ1, . . . , ẋm)

be the natural coordinate system of TG induced by the above canonical one. If v = ∑m
i=1 v

iEi
then according to proposition 2.2 the geodesic γ defined by γ̇ (0) = v is stationary if and only
if

∂L̃

∂xl
(0, . . . , 0; v1, . . . , vm) = 0 l = 1, . . . , m
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is valid. However, according to a system of equalities in the proof of proposition 2.2 the above
equalities are valid if and only if the following hold:

m∑
i,j=1

clij v
i ∂L̃

∂ẋj
= 0 l = 1, . . . , m.

However, considering the identities ckij = −cikj , i, j, k = 1, . . . , m the assertion of the theorem
now follows by lemma 2.1. �

3. The existence of stationary geodesics

As the energy function of a Riemannian manifold is homogeneous of degree two the
following simple lemma which concerns homogeneous Lagrangians applies to this case as
well. Consequently, the theorem below also yields a generalizations of a results concerning
left-invariant Riemannian metrics.

Lemma 3.1. If a regular LagrangianL : TM → R is homogeneous of degree k, where k �= 1,
then L is a first integral of its Lagrangian field X.

Proof. In fact, the Euler–Lagrange equation takes now the following form:

ιX ddυL = d(L− AL) = d(L− kL) = (1 − k) dL

and therefore (1 − k)ιX dL = 0 follows. However, since k �= 1 holds, XL = 0 is obtained. �
In the following theorem two geodesics are considered different if their images are

different.

Theorem 3.2. Let G be a compact connected Lie group and L : TG → R a left-invariant
Lagrangian which is a first integral of its Lagrangian field. Then L has at least one stationary
geodesic. If, in particular, G is also semi-simple and of rank � 2 then L has infinitely many
stationary geodesics.

Proof. Fix a v ∈ TeG − {0e} then the quotient manifold G/Gv is compact and therefore the
restricted Lagrangian

L ◦ χ : G/Gv → R

has at least one critical point which is mapped by χ to geodesic vectors w according to
theorem 2.3.

If G is semi-simple then the negative of the Killing form K : g × g → R yields a
Euclidean inner product 〈 , 〉 on g. As two geodesics are considered different if they have
different images, two geodesic vectors w,w′ ∈ g yield different stationary geodesics issuing
from the identity element if and only if there is no λ ∈ R with w′ = λw. Consequently, it
suffices to show that the unit sphere S of 〈 , 〉 contains infinitely many geodesic vectors. Since
now any homogeneous manifoldG/Gv, v ∈ S is compact, it contains at least one critical point
of L ◦ χ . Therefore, by theorem 2.3 it is enough to see that S includes infinitely many adjoint
orbits. However, since

codimG(v) = dim g − dimG(v) = dim g − (dimG− dimGv) = dimGv � rankG � 2

holds, the number of adjoint orbits included in the sphere S cannot be finite. �
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